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Abstract

We describe a parallel version of the shortest augmenting path algorithm

for the assignment problem. While generating the initial dual solution and

partial assignment in parallel does not require substantive changes in the

sequential algorithm, using several augmenting paths in parallel does require

a new dual variable recalculation method. The parallel algorithm was tested

on a 14-processor Butterfly Plus computer, on problems with up to 900 million

variables. The speedup obtained increases with problem size. The algorithm

was also embedded into a parallel branch and bound procedure for the traveling

salesman problem on a directed graph, which was tested on the Butterfly Plus

on problems involving up to 7,500 cities. To our knowledge, these are the

largest assignment problems and traveling salesman problems solved so far.
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1. Introduction

The assignment problem can be defined either on a directed graph, in

which case an assignment (a solution) is a spanning union of directed cycles,

or on an undirected bipartite graph, in which case an assignment is a perfect

matching. We work with this latter formulation. Given a bipartite graph

G = (SuT, A) with arc costs c J, (i,j)cA, where ISI = ITI = n, the assignment

problem (AP) asks for a pairing (matching, assignment) of the nodes in S to

those in T that minimizes the sum of costs of arcs in the pairing. It can be

stated as

(1) min (c x 1 :icS, jET)

subject to

Z(X j:jcT) = 1 leS
(2)

Zx :icS) = 1 jcT

(3) x I 0 } Ci,j)eA

where x = 1 if and only if node icS is paired with node jcT, i.e. arc (i,j)
IJ

is in the matching. Condition (3) can be replaced by

(4) x a 2 , (i,j)A

because the resulting linear program has only integer basic solutions due to

the total unimodularity of the coefficient matrix of the system (2).

The linear program dual to (AP) can be stated as

(5) max Vu i:ieS) + 1(v :jcT)J

subject to

(6) u + v -Sc , (ij)cA.

It is well known that a vector x satisfying (2), (3) is an optimal

assignment if and only if there exists a vector (u,v) satisfying (6) and such

that



if x J
(7) cJ -u J {:0 otherwise.

The numbers c c - - v are called reduced costs.

Both the primal and dual simplex methods have their specialized versions

for the assignment problem [3,2,21]. The most popular early approach known as

the Hungarian method (18,12,19,8,20], can be viewed as primal-dual in nature,

although in fact it never uses or produces a primal basis. The same can be

said about the Shortest Augmenting Path method [6,9,11,15,28], which treats

(AP) as a specialized minimum cost network flow problem. Our reason for

choosing this latter approach for parallelization is that (a) we consider it

to be the most promising and Cb) it contains parallelisms of somewhat higher

order of granularity than the other approaches. A different approach that

easily lends itself to parallelization, is based on relaxation techniques [41.

We note that the rows and columns of the cost matrix c correspond to the

nodes in S and in T, respectively. Throughout the paper, we will refer to

elements of S (of T) either as nodes, or as rows (as columns).

2. The Sequential Algorithm

The procedure starts by finding an initial solution (Phase 0), i.e. a

partial assignment that is optimal in the subgraph induced by the assigned

nodes. This is achieved by constructing a basic feasible solution to the dual

of (AP) and then finding a maximum cardinality matching in the subgraph having

only those arcs with zero reduced cost. We do this in O(nz) time, where z is

t!- number of arcs with zero reduced costs, and it typically yields a

considerably larger number of [nitial pairings than the usual greedy

heuristics.

Next the pro-edure enters an alternating spqernce of too phascs;

augmenting path finding (Phase 1) and updating (recalculation) of the dual

variables and of the (primal) assignment (Phase 2).
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In Phase 1, an unassigned node ieS is selected and a shortest (with

respect to the current reduced costs) augmenting path is found from it to some

unassigned node jeT. This is done by growing an alternating tree rooted at

node i by a slightly modified version of Dijkstra's O(n 2 ) labeling procedure

[10]. The modification, necessitated by the fact that the shortest path to be

found has to be an alternating one, consists in restricting Dijkstra's

selection rule to successors of nodes in S, while the successors of nodes in T

are uniquely determined and thus leave no choice.

In Phase 2 the labels generated in Phase 1 are used to calculate new

values for the dual variables, and the augmenting path is used to generate a

new assignment, namely the symmetric difference between the old assignment and

the augmenting path. The new assignment matches one more pair of nodes than

the previous one. The algorithm stops when all the nodes have been paired.

A more precise statement of the algorithm follows.

begin

* 0 0 Phase 0 0 0 0

begin

u =min{c :jcT}, icS

v min{c - u :icS), jcT

A {(i,j)cA:c - u - v = O}

find a maximum matching A in G (SuT,A)

end

while IA°I < n do
* • Phase 1 * * 0

begin

choose an unassigned row i cS
I

0 0 0 initialize the set of unlabeled (UC) and labeled (LC) columns 0 0 0

UC := r, LC := o
0 0 0 Initialize the labels A and the predecessors p1 000

foeahc~o :c - U - V , pj :0
f*r each jcj do A I= c p 1

0 0 0 find shortest augmenting path 0 0 0

repeat

find JcUC with A = minA k:kcUC}
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UC := UC\{J}, LC := LCu{J}

if J is assigned then

begin

i := row assigned to column j

for each kcUC do

begin
A:=A +c -u -v

J 1k i k

ifA < A thenA :=, p : j

end

end

until j is unassigned

end

0 Phase 2 0 0

0 0 "update dual variables

for each kcLC\{j}

begin

i :row assigned to column k

V V +A - Ak k k
U I U - Ak + X

end

U : U + ?L
1 1

* 0 0 update current assignment 0 0 0

while p #O do

begin

i row assigned to column p

A :=A u{(i,j)\{(i,p)}

j p1
end;

A A u (i ,j)}

end

When the problems to be solved are large, it pays to use sparse matrix

techniques, i.e. to restrict the search for a successor in the augmenting

paths to the smallest k elements of each row of the reduced cost matrix for

some properly chosen k, and check for dual feasibi.lity of the solution found
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at the end of the procedure. If dual feasibility is violated, the

corresponding rows and columrs must be reassigned; but by proper choice of k,

the probability of a need for such reassignments can be kept rather low (see

[7,8] for a discussion of this procedure).

3. Parallelization: General Considerations

The efficiency of parallelization is usually measured by the speedup,

i.e. the ratio between the times needed to solve a given problem with a single

processor and with p processors. The speedup in turn depends on the time

spent by all the processors on actual computing, versus the time spent on

inter-processor communication or idling.

A key factor that affects the efficiency of a parallelization is its

granularity. High granularity parallelism is one that allows each processor

to execute substantial amounts of computation before the need for

communication arises. Low granularity parallelism is one that requires

frequent communication and data transfer between processors. An example of

the first type of parallelism is a branch and bound procedure in which every

processor works on a different subproblem; while an example of the second type

is a sorting algorithm in which each processor compares two items and passes

on the result. On most existing parallel computers higher granularity

parallelization yields a higher speedup.

Another factor that affects the efficiency of parallelization is the

frequency of synchronization points in the procedure. From time to time the

processors that have finished a certain task have to wait until all others

finish the same task, in order to exchange some information needed for

continuation. This may create a substantial amount of idle time, so the less

frequent the synchronization, the more efficient the procedure will tend to

be.
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Last, but not least, the efficiency of parallelizatlon depends, for a

given algorithm, on the architecture of the computer used Parallel computers

may be classified into Single Instruction Multiple Data (SIMD) and Multiple

Instructions Multiple Data (MIMD). Within the latter category, one may

distinguish between Uniform Memory Access (UMA), Non-Uniform Memory Access

(NUMA), and No Remote Memory Access (NORMA) computers. In UMA machines all

memLy access is uniform, i.e. access times are independent of memory

location. NUMA machines distribute memory across processors, thus some access

(local) takes less time than other (remote). The difference may be small or

large, depending on the kind of connection used for remote memory access.

NORMA machines allow no remote memory access, all interprocessor communication

takes place via explicit message passing. Our implementation is designed

primarily for a NUMA architecture where the ratio between remote and local

access times is on the order of ten (the ratio for our computer). Larger

access time ratios may require modifying some of the implementation details.

The algorithm should port as described to most UMA architectures. The only

architectural requirements are interprocessor communication via shared memory,

atomic operations on selected memory locations, and processor synchronization.

Implementation on NORMA architectures should also be possible, but the data

placement strategy must be modified according to the capabilities of the

machine.

For a discussion of concepts and issues related to parallel computing see

(17,26,25,131. In our approach, the cost matrix is evenly distributed across

processor memories in contiguous blocks of rows. This partitioning scheme

makes it possible to store quite large matrices. In view of the non-uniform

memory access times, calculations are designed so that each processor works

primarily with the rows stored in local memory. Each processor's local memory

holds a row buffer. Whenever a processor needs access to a row stored in
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another processor's memory, it copies the row in question into its row buffer,

which it then uses to access locally individual row elements one at a tim-, as

needed.

The current assignment A is stored as a single predecessor /successor

list.

The dual variables uI and v are stored as follows. Every processor

keeps a copy of each column variable v , but there is only one centrally

stored copy of the row variables u . The reason for this is that the reduced

costs c = c - u - v are calculated row-wise, i.e. u remains unchanged

for an entire row while v changes with every c . This way there are noJ Ij

simultaneous memory access requests for the frequently used column variables,

and only a small chance of simultaneous access requests for the much less

frequently needed row variables. Besides the aspect of minimizing conflicting

memory access requests, this storage scheme also capitalizes on the fact that

local memory access is cheaper than remote access.

The specifics of the parallelization in each phase are discussed below.

4. The Initial Solution Phase

The calculation of the initial feasible solution to the dual of (AP) is

done in parallel. First, each processor calculates the value of u as the

minimum of c i, jeT, for each of its own rows. Then each processor

calculates, for each column jET, the minimum of c - u over its own set of
ii

rows, and one processor calculates v as the smallest of these partial minima.J

Finally, each processor calculates the reduced costs c - u - v for its own

rows, and constructs its part of the admissible graph G (SuT,A), where A

{(i,j)cA : c - u - v = W

Next, a maximum matching is found in the admissible graph by a

sequential algorithm. The time required for this is too small to justify
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parallelization, which could only be of relatively low granularity.

Next the sparse matrix structure is created, again in parallel, by having

each processor find the k smallest costs in each of its rows. For problems

with n z 500 we used k = 1/50, and the solution obtained in this way was

always dual feasible.

5 The Augmenting Path Finding Phase

At the end of Phase 0, q rows and q columns have been assigned to each

other, for some positive integer q ! n, and n-q rows and columns are

unassigned. In principle there are two ways in which the search for augmenting

paths can be parallelized: (i) have each processor choose a different

unassigned node in S and apply the labeling technique in an attempt to find an

augmenting path. (ii) have several processors jointly attempt to find an

augmenting path from some unassigned node in S. In the first case, several

augmenting paths are generated in parallel, but each path is found by a single

sequential procedure. In the second case, each path is constructed in

parallel. The second kind of parallelizatlon is of lower granularity, so on

most existing parallel computers the first kind ought to have priority. in

fact, a preliminary investigation of the second kind of parallelization showed

so little promise on our computer that we have so far not implemented it. (On

other types of computers it may be advantageous to implement both i) and

(ii)). The rest of this discussion will concentrate on (i).

Suppose each processor uses the labeling technique to construct an

alternating tree rooted at a different node, and as a result finds an

augmenting path. Can all the p hs found in this way be used simultaneously

to augment the current partial ssignment while leaving it optimal? If the

alternating trees found by lab~llng are pairwise disjoint, then clearly

performing the augmentation and he recalculation of the dual variables In
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parallel has the same effect as performing them sequentially, hence the

procedure is legitimate. On the other hand, if two augmenting paths have some

node in common, then one of them cannot be used for augmentation. Thus the

paths used for augmentation have to be disjoint. The crucial question is,

what happens if we have a collection of augmenting paths that are parwise

disjoint, but the corresponding alternating trees are not? In this case

performing the augmentation and the recalculation of the dual variables in

parallel may not have the same effect as doing them sequentially, and in the

sequential case it imay even seem doubtful whether using a first path for

augmentation leaves the remaining Jaths "shortest" in terms of the modified

reduced costs. The next Theorem dispels these doubts by showing that if :he

procedure for updating the dual variables is duly modified, then any set of

pairwise disjoint augmenting paths can be used in parallel, even when their

associated alternating trees collide.

Let A be a matching of the nodes of S . S to those of T T, and let

(u,v)c 2n satisfy

c (i, j)cA

i J C I J( i , j ~ c A *
Condition (8) is necessary and sufficient for A to be a minimum-cost

perfect matching in the subgraph induced by SuT.
0

For h = 1 ...... m, let P be an augmenting path with respect to A fromh

node ih cS\S to node j hcT\T, let LC be the set of columns labeled in the
hh

process of generating P , and for jcLC , let Ah be the label assigned column j
hh J

in that process. Further, let M {, .... mi, and let LC be the set of all

columns labeled while generating the m augmenting paths P , heM, i.e. LCh

U LC
h

hCl

Assume now that the augmenting paths Ph , hcM, are pairwise node disjoint,

and let A be the matching in G obtained by augmentIng A along each of the



paths P , hcM, i.e.
04

A :A( uP),
hhc x

where a denotes the symmetric difference (for sets X, Y, X9Y = XuyAXlY). Then

clearly A is a matching of the nodes of Svui M....i } to those of

Tu ,..., . Furthermore, A has the following property.

Theorem. For jeT, let i(j) be the row assigned to column j by A, and

define

v - max {Ah _ Xh }  if jcLC{ h:JCLC h xV :

v otherwiseJ

u + max {A - ;k if i = i(j) for some jeLC
h: JCLC hh

u= u + if i = i for some hcMIi ] h

1 o therwise.

Then
r c for (i,j)cA(0) + ~V 00

I = for (i,jj'cA

Proof. For i,j)cA, we will denote by c and c the reduced costs

associated with A and A , respectively, i.e. c ij C - u - , c
"=0 I - h - V , C =

c - U - v .  Also, for each heM, we will denote by uh and vh the dual
Ij i i J

variables, and by ch the reduced costs (i.e. c h := c - u - v ) that wouldIJ i] '.J 1 J

be obtained if A were augmented by using only the path P . Since each P is
h-h

a short- ,t augmenting path, it is -ell known that c t 0 for all (i,j)cA andii

all h M, and c i = 0 for all (i,J)cA P .

0

Our proof of c z 0 will ,.onsist in showing for every (i,j)cA, eitheri
• • h

that c 2tc or that c z c for some hcM.
Ix Ixh h

For this purpose, we first state explicitly the values of u and v J

IOI
Recall that P hconnects I hcS\S to ,j h T\T and that 1QJ) Is the row assigned by

10



A to column j. For hcM, we have

v A h + Ah  if JcLC
h  = h h h
v
j

v otherwiseJ

and
u + ;k - h if i i(j) for some jcLC

h Ah
u h u if I = I
Ii h h

u otherwise

Note that, by construction, the labels satisfy Xh Ah for all jeLC and
Jh Jh

all hcM.

We now examine c for different positions of i and j. First if icS\SI'

and i~i for all hcM, then u = u and
h I I

c - u - v + max {1h - Ah} if jeLC
Cj I h: JCLCh  J J

c* h: u v otherwise

hence c t-c 2 O.
Ij ij

* h
Next, if i i for some hcM, then u u h and

h i I

h - kIcifJCLLc - u - v + max k , if jeLCIj I J k:JCLC k Jik J

ck

h v otherwise
*j -ih

Since -v + max k _ Xk  - h for all jeLC, c z follows.
J k: JCLC Ji k J J J

Now let ieS, namely let i = i(k) for some kcT. There are several cases

to be considered.

Case 1. keLC, JcLC. Then

c c u max {X - X}-v + max {X -Xh
tJ tJ I h:kCLC ih J h: JCLC hh h

0 
-If J = k, then c = c t 0. If jxk, let t and m be the indices for which

th tj
the two maxima in the above expression are attained. Then
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C =C -u - + -v +A M-
IJ 1J I k j j j

c + CM x 'I -(CA - x3 if jcLCt

A+ A' ( if jLC
4 1

and hence from the definition of m, c -

Case 2. keLC, jcT\LC. Then

*h hc c u - max {X -A} -v ac
J h:kCLC h

h

where t is chosen as in Case 1.

Case 3. kcT\LC, jcLC. Then

c c -u-v + max { h -A } c
h: JCLC hN

Case 4. keT\LC, jeT\LC. Then

I j - iIJ

This completes the proof of c -a 0, (i,j)cA.
00

To prove that (I,j)cA implies c = 0, it is sufficient to point to the

fact that since the paths Ph heM, are pairwise disjoint, every (i,j)cA is
• I • -h

contained in at most one path P . Hence for every (i,j)cA , c = c for

the particl iar heM for which P contains (i,j), and hence c = O.rh iJ
*0

Corollary. A is a minimum-cost perfect matching in the subgraph

induced by Su{i,. ,i Tu{j ... ,j

The parallel search for augmenting paths Is implemented as follows.

After Phase 0, all processors work simultaneously either on Phase 1 or on

Phase 2 of the algorithm, the two alternating phases being separated by a

synchronization stage. During every Phase 1, each processor chooses an

unassigned node IcS and uses the labeling technique to grow an alternating

tree (in the same way as in the sequential algorithm), until an unassigned

node jeT is labeled; at which point a potential augmenting path from I to j

has been identified. If this path is node disjoint from all the undiscarded

12



paths found by any of the processors during the current phase, it is stored as

an actual augmenting path, along with all the labels assigned in the process

ot finding it; otherwise it is discarded. In either case, the processor in

question chooses another unassigned node in S to search for another augmenting

path. The phase ends when the number of potential augmenting paths generated

exceeds a certain fraction a of the total number of unassigned nodes. At that

point all processors stop the search for augmenting paths (synchronization)

and simultaneously start working on Phase 2. Tne value of a, determined

experimentally, was chosen to be 1/3. This choice is intended to balance the

advantages of longer Phase I runs against their disadvantages: the longer a

Phase 1 run, the higher the probability that the newly found augmenting paths

collide with earlier paths found during the given Phase 1 and have to be

discarded; and the shorter a Phase 1 run, the higher the proportion of time

lost by each processor in the last unfinished run (interrupted by the call for

synchronization).

The procedure of checking each newly found path for collision with

earlier paths as soon as it is found, is a heuristic which favors simplicity

and ease of implementation over the benefits that could be gained from storing

all potential augmenting paths until the synchronization point, and then

selecting among them a maximum number of pairwise node disjoint ones to serve

as actual augmenting paths.

During the labeling procedure, one has to repeatedly find the minimum of

a set of labels. As the potential augmenting paths get longer and longer,

this step becomes more and more expensive. To reduce its cost, we have

implemented the data structure known as d-heap [27]. This saved considerable

computational effort towards the end of the procedure, when the number of

unassigned nodes is small and the potential augmenting paths are very long;

but it did not justify itself in the earlier stages when the potential

13



augmenting paths are shorter. As a result, our current implementation

switches to the use of d-heaps only when the assignment is 98% complete.

6. The Updating Phase

For the updating of the dual variables, the changes Au := u - u and

Av v v (see (9)) are stored centrally, initialized at zero at theJ J J

beginning of Phase 1, and updated whenever a processor finds a new value that

warrants a change. The new values are actually calculated during the labeling

procedure of Phase 1, so that in fact Phase 2 consists simply in putting into

effect the changes calculated during Phase 1.

To be specific, the updating is implemented as follows. At the start of

Phase 1, Au and Av are set to 0 for all IcS, jeT. As the processor workingI j

on augmenting path P calculates the value Xh - Ah for column J, if Xh _ Ah
h J j h J

> -Avj, then Av is replaced by -(Xh X h); and If i(j) is the row assigned

h hto column j, Au is replaced by A _ A h1(j) J

The actual changing of the dual variables in Phase 2 then consists of

each processor replacing its own set of column variables v with v , jCT, and

of replacing the centrally stored row variables u with u
I i

As to the changing of the assignment, the operation A = A ( u P ),
hhC M

where M is the set of actual augmenting paths generated, is executed on the

predecessor/successor list that stores the current assignment.

7. Computational Results

Our parallel shortest augmenting path algorithm was implemented in the

programming language C on a 14 processor BBN Butterfly Plus computer, with 56

megabytes of shared memory. The Butterfly Plus Is a non-uniform memory

multiprocessor consisting of Motorola 68020/68881 processors accessing 4
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megabytes of local memory each, and nonlocai (or remote) memory through a

packet switched network. Remote memory access is channelled through a switch

and is therefore slower than local memory access. The Butterfly does not allow

simultaneous access to individual memory locations. When two or more requests

are made for reading a memory location only one access is serviced. The other

requests must be retried at a later time. A more complete description of the

Butterfly architecture may be found in (251.

Table 1 contains a summary of the computational results obtained by

solving fully dense assignment problems on graphs ranging in size from 1000 to

30,000 nodes. This is to our knowledge the first time that problems of this

size were solved. The costs for these problems were drawn from a uniform

distribution of the integers in the range [0, 1001, [0, 10001, and (0, 10000].

The statistics represent an average of three problems for each size and cost

range. The column headings in Table 1 have the following meaning:

n = IS1 = ITI. The number of initial assignments is the number of assigned

nodes at the end of Phase 0. Setup time is the time required to initialize

the dual variables, construct the admissible graph E, and derive the sparse

cost matrix from the original one. Initial matching time and augmenting path

time are the times used for those respective operations. Optimality check

time is the time required to check that the optimal matching found using the

sparse matrix is dual feasible on the complete cost matrix. Finally, total

time is the execution time of the complete algorithm.

The data of Table I show that the setup time and augmenting path time

together account for roughly 4/5 of the total time, with the augmenting path

time alone taking up between 1/2 and 2/3 of total time, except for the

smallest cost range. While the algorithm that finds an initial matching is

run sequentially by a single processor, it typically requires 3-13% of total

time, with the exception of the cost range (0,1001, where there is a large
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numoer of optimal solutions and the initial matching turns out to be optimal

in every case. As the data for the [0,1000] and [0,10000] cost ranges show,

the initial matching routine determines an increasing fraction of the total

number of assignments as the problem size becomes large relative to the cost

range. The [0,100] cost range results represent a culmination of this effect,

in that the shortest augmenting path procedure becomes in this case

unnecessary for determining an optimal solution.

The problems of size 10000, 20000, and 30000 shown in the last segment

of Table I were solved using a special version of the algorithm. This version

generates the dense cost matrix a row at a time on each processor, determines

a sparse row from each of these full row3, and discards the full rows so that

the complete cost matrix does not have to be stored in memory at any one

time. After an optimal solution is found on the sparse cost matrix, dual

feasibility is verified on the complete cost matrix by having processors

regenerate and examine complete rows one at a time. Thus the special version

of the algorithm requires two complete cost matrix generations to guarantee

optimality on the dense cost matrix. For the sake of comparability, the

execution times reported in Table 1 do not include matrix generation times but

do include the time required to determine the sparse cost matrix and check

dual feasibility.
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Table 1. Algorithm Performance with 14 Processors

Cost range (0,100]

n Number of Setup Initial Matching Augmenting Optimality Total
initial time time (sec) path time check time Time

assigments (sec) (sec) (sec) (sec)

11000 1OCO.0 1.33 0.68 - - ,2.01

2000 2000.0 4.05 1.47 - - 5.52

3000 3000.0 8.37 2.29 - - 10.66

Cost range [0,1000]

n Number of Setup Initial Matching Augmenting Optimality Total
initial time time (sec) path time check timel Time

assignments (sec) (sec) (sec) (sec)

1000 864.0 1.98 0.30 6.86 0.25 9.39

2000 1856.3 6.49 1.21 14.59 0.90 23.20

3000 2944.0 14.51 5.02 19.01 2.04 40.59

Cost range [0,10000]

n Number of Setup Initial Matching Augmenting Optimality Total
initial time time (sec) path time check time Time

assignments (sec) (sec) (sec) (sec)

10001 811.7 1.991 0.29 9.17 0.25 11.70

2000 1644.0 6.51 1.00 21.69 0.89 30.09

3000 2472.7 14.62 2.13 40.33 2.03 59.11

10000 8674.0 80.95 22.66 175.06 37.12 315.79

20000 18569.0 282.25 84.99 717.46 148.51 1233.21

30000 29467.7 651.08 395.24 1665.61 324.47 3036.40
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Table 2. Algorithm Performance on 1 Processor

Cost range [0,100]

n Number of Setup Initial Matching Augmenting Optimality Total
initial time time (sec) path time check time Time

assignments (sec) (sec) (sec) (sec)

1000 1000.0 18.19 0.39 - 18.58

2000 2000.0 74.49 0.74 - 79.23

3000 3000.0 171.07 1.11 - 172.18

Cost range [0, 1000]

n Number of Setup Initial Matching Augmenting Optimality Total
initial time time (sec) path time check time Time

assignments (sec) (sec) (sec) (sec)
-i

1000 864.0 25.72 0.28 10.20 3.67 39.87

2000 1856.3 108.20 1.09 32.45 14.30 156.05

3000 2944.0 258.50 3.77 29.56 37.61 329.45

Cost range [0,10000]

n Number of Setup Initial Matching Augmenting Optimality Total
initial time time (sec) path time check time Time

assignments (sec) (sec) (sec) (sec)

1000 811.7 25.77 0.28 13.93 3.67 43.65

2000 1644.0 108.28 0.97 48.99 14.26 172.50

3000 2472.7 258.55 2.10 117.96 37.64 416.25
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Table 3. Algorithm Speedup

Cost Range [0,100]

n Setup Augmenting Optimality Global

Path Check

1000 13.68 - 9.24

2000 18.39 - 13.62

3000 20.44 - 16.15

Cost Range [0,1000]

n Setup Augmenting Optimality Global
Path Check

1000 12.98 1.48 14.08 4.24

2000 16.67 2.22 15.89 6.72

3000 17.81 1.55 18.43 8.11

Cost Range (0, 10000]

n Setup Augmenting Optimality Global

Path Check

1000 12.94 1.51 14.68 3.73

2000 16.63 2.26 16.02 5.73

3000 17.68 2.92 18.54 7.04

Table 2 contains a summary of the computational results obtained by

solving the same fully dense assignment problems shown in Table 1 using a

single processor. The performance data shown In Table 2 were obtained by

distributing the complete cost matrix across all 14 processor memories but

using only a single processor to execute the algorithm. Such a partitioning
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approach was necessary since the complete cost matrix could not be stored in

any one processor memory.

Table 3 shows the speedup of the individual portions of the algorithm as

well as the overall speedup. Speedup is defined here to be the sequential

execution time shown in Table 2 divided by the parallel execution time shown

in Table 1. As Table 3 shows, the portions of the algorithm accounted for by

the setup times and by the optimality check times yield high speedups. In

fact, for many entries of Table 3, the speedup actually exceeds the number of

processors. These superlinea' speedups represent a distortion mostly due to

the matrix partitioning strategy described in the previous paragraph. A

processor executing the algorithm sequentially must make a large number of

nonlocal cost matrix accesses during the setup and optimality check phases.

During the multiprocessor execution, processors always work out of local

memory during the setup and optimality phases. Thus the sequential execution

Is penalized by the nonlocal memory accesses.

Table 3 also shows that the speedup for the augmenting path phase is

substantially less than the number of processors. One reason for this is the

need for synchronization. During any Iteration of the algorithm, all

processors must wait for the slowest processor before moving to the next phase

of the algorithm, and the length of the Interval between two consecutive

synchronizations Is limited by the need to keep disjoint the potential

augmenting paths constructed. Furthermore, towards the end of the algorithm,

when the number of unassigned nodes Is less than the number of processors,

some of the processors must lie idle. This phenomenon is exacerbated by the

fact that the last few augmenting paths always take many times longer to find

than the earlier ones.

Despite the lower speedup for the augmenting path phase, the overall

algorithm speedup remains quite good. In fact, Table 3 indicates that both
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the augmenting path speedup and overall speedup increase with problem size for

all three cost ranges.

Other parallel algorithms for the assignment problem have been proposed

and/or implemented by Bertsekas [] and Hatay £141, based on the auction

method, and by Kennington and Wang [161, based on the shortest augmenting path

method. Bertsekas' implementation is a simulated parallel algorithm run on a

sequential VAX 11/750 on sparse assignment problems ranging in size from 500

to 2500 nodes. Speedups of about 10 were obtained for a number of virtual

processors equal to problem size. Hatay has implemented the auction algorithm

on a 20-processor Sequent Balance 21000. For fully dense problems of size

1600 and cost range [0, 10000] speedups are reported to be about 4 and 7 for 5

and 10 processors, respectively, with a decrease for a larger number of

processors. On the 20 processor computer, the fastest reported solution time

(48 seconds) was obtained when using only 10 processors.

Kennington and Wang's implementation of the shortest augmenting path

algorithm for an 8-processor Sequent Symmetry S81 is based on several

processors simultaneously constructing an augmenting path. Tested on problems

of size 800 to 1200, the algorithm obtains speedups between 2.73 and 7.64 for

the cost range £0, 1001, between 2.24 and 5.63 for the cost range [0,1000], and

between 2.46 and 4.89 for the cost range [0,10000]. Kennington and Wang ran

extensive comparisons of the shortest augmenting path algorithm with the

auction algorithm, and concluded that for dense assignment problems the former

dominates the latter.

Finally, a parallel version of the primal simplex method for the

transportation problem was implemented by Miller, Pekny and Thompson [231 and

tested on the same 14-processor Butterfly Plus computer on which our algorithm

was run. This code of course is meant for a more general problem, but it can

be used to solve assignment problems. For assignment problems of size 3000
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with costs in the ranges [0,10001 and [0,10000], the speedups are about 7, but

the absolute times are about 500 and 900 seconds, respectively, for the two

ranges.

8. Application to the Asymtric Traveling Salesman Problem

One well known application of the assignment problem is its use in

branch and bound algorithms to solve the traveling salesman problem on a

directed graph, also called the asymmetric traveling salesman problem (ATS?)

(see [1] for a survey). The assignment problem (AP) obtained from the

standard integer programming formulation of the ATSP by removing the subtour

elimination constraints is a relaxation of the ATSP whose strength is best

illustrated by the fact that for randomly generated costs the value of an

optimal assignment is within 1% of the value of an optimal tour for problems

with 100 nodes, and this percentage decreases with problem size. As a

resultapplying branch and bound to the ATSP with random costs typically

results In search trees of manageable size. Miller and Pekny [22,241 have

implemented a parallel branch and bound algorithm for the ATSP, using the AP

as a relaxation. Table 4 shows the effect of solving the AP at the root node

of the search tree with the parallel algorithm described in this paper, as

opposed to the corresponding sequential algorithm. The data of the table

represent average times for three problems in each class, except for the

largest size (n = 7500), for which only two problems were run. All problems

up to n = 3000 were run on the 14-processor Butterfly Plus, while the problems

for n = 5000 and n = 7500 were run on a 100-processor Butterfly Plus.
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Table 4. Performance of Parallel Branch and Bound Algorithm

for the Asymmetric Traveling Salesman Problem on 14 Processors

Cost Range [0, 10001

Execution time (sec) Execution time (sec)
with parallel with sequential

n assignment algorithm assignment algorithm

1000 71.33 101.81

1500 137.62 213.21

2000 272.98 405.81

2500 585.09 784.45

3000 451.71 740.57

Cost Range [0, 100001

Execution time (sec) Execution time (sec)
with parallel with sequential

n assignment algorithm assignment algorithm

1000 249.09 326.04

1500 302.31 379.97

2000 1017.05 1159.46

2500 777.19 1007.24

3000 1392.12 1749.26
* I

5000 1606.30 --

7500 °  8809.40 1
100-processor Butterfly Plus
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